Saturday, July 29, 2017

Manfaat ilmu fisika dalam kehidupan sehari-hari

Banyak orang yang beranggapan bahwa Fisika hanya sekedar ilmu biasa yang hanya mempelajari ilmu alam tanpa ada penerapannya. Terutama masih banyak orang yang beranggapan bahwa Fisika hanya mempelajari rumus. Dan tak sedikit yang  tidak menyadari bahwa banyak peristiwa bahkan hal-hal yang sangat dekat dengan kita melibatkan ilmu Fisika. Bahkan Fisika merupakan ilmu dasar yang sangat dibutuhkan oleh cabang ilmu-ilmu lain. Mengapa Fisika sangat penting dalam kehidupan kita? Tentu karena banyak peristiwa dalam kehidupan kita yang melibatkan ilmu Fisika baik kita sadari maupun tan.pa kita sadari. Semakin kita memahami Fisika kita akan mengetahui bahwa Fisika mempunyai cakupan yang luas. Berikut adalah contoh aplikasi ilmu Fisika dalam kehidupan sehari-hari.
Beberapa contoh penerapan ilmu fisika dalam kehidupan sehari-hari:
1. Penerapan Hukum Newton
Hukum  1 newton :
Sebuah benda mempertahankan kedudukannya. Dikenal dengan hokum kelembaman
contoh : jika kita dalam sebuah mobil dalam keadaan diam.saat mobil itu tiba2 maju badan kita tba2 terdorong ke depan atau ke belakang karena sebelumnya tidak ada gaa yang bekerja pada tubuh kita. Sehingga jika ada gaya yang bekerja tubuh kita member reaksi dengan maju atau mundur.

Hukum  2 newton :
Dikenal dengan rumus
F = m x a

penerapanya saat kita berada dalam lift

Hukum 3 newton :
Ini merupakan gaya aksi = reaksi
contoh : saat kita mendorong meja maka meja akan bergerak sesuai gaya yang kita berikan yang akan bergerak berlawanan dengan arah dorong kita.

2. Aplikasi Gerak Lurus Beraturan
Gerak Lurus Beraturan (GLB) merupakan gerak yang memiliki kecepatan yang konstan. Walaupun GLB sulit ditemukan dalam kehidupan sehari-hari, karena biasanya kecepatan gerak benda selalu berubah-ubah.

Contoh:
Kendaraan yang melewati jalan tol. Walaupun terdapat tikungan pada jalan tol, kendaraan beroda bisa melakukan GLB pada jalan tol hal ini jika lintasan tol lurus. Kendaraan yang bergerak pada jalan tol juga kadang mempunyai kecepatan yang tetap.
Gerakan kereta api atau kereta listrik di atas rel. Lintasan rel kereta kadang lurus, walaupun jaraknya hanya beberapa kilometer. Kereta api melakukan GLB ketika bergerak di atas lintasan rel yang lurus tersebut dengan laju tetap.
Kapal laut yang menyeberangi lautan atau samudra. Ketika melewati laut lepas, kapal laut biasanya bergerak pada lintasan yang lurus dengan kecepatan tetap. Ketika hendak tiba di pelabuhan tujuan, biasanya kapal baru mengubah haluan dan mengurangi kecepatannya.
Gerakan pesawat terbang. Pesawat terbang juga biasa melakukan GLB. Setelah lepas landas, pesawat terbang biasanya bergerak pada lintasan lurus dengan dengan laju tetap. Walaupun demikian, pesawat juga mengubah arah geraknya ketika hendak tiba di bandara tujuan.

3.Aplikasi Gerak Lurus Berubah Beraturan
GLBB merupakan gerak lurus berubah beraturan. Berubah beraturan maksudnya kecepatan gerak benda bertambah secara teratur atau berkurang secara teratur. Perubahan kecepatan tersebut dinamakan percepatan. Pada kasus kendaraan beroda misalnya, ketika mulai bergerak dari keadaan diam, pengendara biasanya menekan pedal gas (mobil) atau menarik pedal gas (motor). Pedal gas tersebut biasanya tidak ditekan atau ditarik dengan teratur sehingga walaupun kendaraan kelihatannya mulai bergerak dengan percepatan tertentu, besar percepatannya tidak tetap alias selalu berubah-ubah.

Contoh GLBB dalam kehidupan sehari-hari pada gerak horizontal alias mendatar sering kita temukan pada pengendara kendaraan.Sedangkan GLBB pada gerak vertikal yang sering kita temukan pada kegiatan sehari-hari, contohnya buah mangga yang jatuh dari pohonnya.

4. Aplikasi gelombang elektromagnetik
Konsep gelombang elektromagnetik ternyata sangat luas tidak hanya berkaitan dengan TV atau handphone saja, melainkan banyak aplikasi lain yang bisa sering kita temukan sehari-hari di sekitar kita. Aplikasi tersebut meliputi microwave, radio, radar, atau sinar-x.

Sinar-X adalah sebuah fenomena yang ditemukan oleh Rontgen pada laboratoriumnya. Sebuah fenomena yang kemudian menjadi awal pencitraan medis (medical imaging) pertama, tangan kiri istrinya menjadi uji coba eksperimen penemuan ini. Inilah menjadi titik awal penggunaan pencitraan medis untuk mengetahui struktur jaringan manusia tanpa melalui pembedahan terlebih dahulu. Penemuan ini juga menjadi titik awal perkembangan fisika medis di dunia, yang memfokuskan aplikasi ilmu fisika dalam bidang kedokteran.

Eksperimen Röntgen terhadap tangan istrinya, menjadi inspirasi produksi alat yang dapat membantu dokter dalam diagnosa terhadap pasien, dengan mengetahui citra tubuh manusia. Citra atau gambar yang dihasilkan dari sinar-X ini sifatnya adalah membuat gambar 2 dimensi dari organ tubuh yang dicitrakan dengan memanfaatkan konsep atenuasi berkas radiasi pada saat berinteraksi dengan materi. Gambar atau citra objek yang diinginkan kemudian direkam dalam media yang kemudian dikenal sebagai film. Dari Gambar yang diproduksi di film inilah informasi medis dapat digali sesuai dengan kebutuhan klinis yang akan dianalisis.

Tahun 1971, seorang fisikawan bernama Hounsfield memperkenalkan sebuah hasil karyanya yang dikenal dengan Computerized Tomography atau yang lazim dikenal dengan nama CT Scan. Citra / gambar hasil CT dapat menujukan struktur tubuh kita secara 3 dimensi, sehingga secara medis dapat dijadikan sebagai sebuah alat bantu untuk penegakan diagnosa yang dibutuhkan. Untuk mengabadikan penemunya dalam CT terdapat bilangan CT atau Hounsfield Unit (HU), namun penemuan ini juga merupakan jasa Radon dan Cormack.

Tahun 1990an, sebuah perangkat yang dikenal dengan nama Magnetic Resonance Imaging (MRI), terobosan baru yang tidak menggunakan radiasi pengion seperti CT dan sinar Rontgen untuk dapat menghasilkan sebuah citra dengan resolusi yang yang sangat baik dalam mencitrakan struktur tubuh manusia khususnya organ kepala. Inventor MRI mendapat ganjaran hadiah nobel bidang fisiologi dan kedokteran tahun 2003.

Dengan karya fisikawan, insinyur, ahli komputer muncullah sebuah teknologi yang digunakan untuk penegakan diagnosa. Banyak teknologi lain yang dikembangkan oleh para fisikawan dan ilmuwan lain untuk kedokteran seperti halnya ultrasonografi, linear accelerator untuk radioterapi, dan juga CT dan USG 4 Dimensi.

5. Aplikasi energi (nuklir)
Teknologi dan teknik penggunaan nuklir dapat memberikan manfaat dan kontribusi yang besar untuk pembangunan ekonomi dan kesejahteraan rakyat. Misalnya, nuklir dapat digunakan di bidang pertanian, seperti pemuliaan tanaman Sorgum dan Gandum dengan melalui metode induksi mutasi dengan sinar Gama.

Di bidang kedokteran, teknik nuklir memberikan kontribusi yang tidak kalah besar, yaitu, terapi three dimensional conformal radiotherapy (3D-CRT), yang dapat mengembangkan metode pembedahan dengan menggunakan radiasi pengion sebagai pisau bedahnya. Dengan teknik ini, kasus-kasus tumor ganas yang sulit dijangkau dengan pisau bedah konvensional menjadi dapat diatasi, bahkan tanpa merusak jaringan lainnya.

Di bidang energi, nuklir dapat berperan sebagai penghasil energi Pembangkit Listrik Tenaga Nuklir (PLTN). PLTN dapat menghasilkan energi yang lebih besar dibandingkan pembangkit PLN.
Energi nuklir biasanya juga dimanfaatkan dalam bidang militer yaitu untuk membuat bom. Peristiwa Bom nuklir yang paling terkenal adalah Hirosma dan Nagasaki yang hingga sekarang kawasn yang terkena bom nuklir tersebut menjadi kota mati karena bom nuklir menghasilkan radiasi yang berbahaya seperti kankker kulit,kanker mata…dll. Sebelum waktu paruh habis sebuah tempat yang teradiasi nuklir tidak boleh ditempati.

No comments:

Post a Comment